Skip to contents

spicy is designed to make variable exploration, documentation, and descriptive statistics fast, expressive, and easy to use.

What is spicy?

spicy is an R package for quick, consistent, and elegant exploration of data frames. It helps you:

  • Extract variable metadata and display compact summaries of dataset variables using varlist() (with vl() as a convenient shortcut), including names, labels, values, classes, number of distinct non-missing values, number of valid observations, number of missing observations. Similar to the “Variable View” in SPSS or the “Variables Manager” in Stata.
  • Generate an interactive codebook generator code_book() that extends varlist() with searchable summaries and built-in export options (Copy, CSV, Excel, PDF, Print) via DT::datatable. Ideal for documenting all the variables present in a data frame.
  • Compute frequency tables with freq(), row-wise means with mean_n(), row-wise sums with sum_n(), and counts of specific values using count_n() — all with automatic handling of missing data.
  • Explore relationships between categorical variables using cross_tab() for contingency tables and cramer_v() for association strength.
  • Copy data frames or result tables directly to the clipboard using copy_clipboard() for fast export to spreadsheets or text editors.
  • Extract and assign variable labels from column headers with label_from_names(), especially useful for LimeSurvey CSV exports where headers follow a “name [separator] label” pattern — any string can be used as the separator (e.g., “.”, ” - “,”:“, etc.).
  • Handle labelled, factor, Date, POSIXct, and other commonly used variable types.

All with intuitive functions that return clean, structured outputs.


Installation

For the stable version, install from CRAN.

You can install the development version of spicy from GitHub with:

# install.packages("pak")
pak::pak("amaltawfik/spicy")

Example usage

Here are some quick examples using built-in datasets:

library(spicy)
library(dplyr)

# Get a summary of all variables in the Viewer
varlist(iris)

Summary of all variables shown in the Viewer

# Get a summary of the variables that start with "d" in the Viewer
# Asterisks (*) in the title indicate that the data frame has been subsetted
vl(mtcars, starts_with("d"))

Summary of the variables that start with d in the Viewer

# Get a summary of all variables as a tibble
varlist(iris, tbl = TRUE)
#> # A tibble: 5 × 7
#>   Variable     Label Values                        Class Ndist_val N_valid   NAs
#>   <chr>        <chr> <chr>                         <chr>     <int>   <int> <int>
#> 1 Sepal.Length <NA>  4.3, 4.4, 4.5, ..., 7.9       nume…        35     150     0
#> 2 Sepal.Width  <NA>  2, 2.2, 2.3, ..., 4.4         nume…        23     150     0
#> 3 Petal.Length <NA>  1, 1.1, 1.2, ..., 6.9         nume…        43     150     0
#> 4 Petal.Width  <NA>  0.1, 0.2, 0.3, ..., 2.5       nume…        22     150     0
#> 5 Species      <NA>  setosa, versicolor, virginica fact…         3     150     0

# Tabulate frequencies with sort alphabetically (Z-A)
freq(iris, Species, sort = "name-")
#> Frequency table: Species
#> ────────────────────────────
#>  Values       N     % Valid%
#> ────────────────────────────
#>  virginica   50  33.3   33.3
#>  versicolor  50  33.3   33.3
#>  setosa      50  33.3   33.3
#>  Total      150 100.0  100.0
#> ────────────────────────────
#> Class: factor
#> Data: iris

# Cross-tab with column percentages
cross_tab(mtcars, cyl, gear)
#> Crosstable: cyl x gear (%)
#> ─────────────────────────────────────────
#>  Values           3     4     5 Row_Total
#> ─────────────────────────────────────────
#>  4              6.7  66.7  40.0      34.4
#>  6             13.3  33.3  20.0      21.9
#>  8             80.0   0.0  40.0      43.8
#>  Column_Total 100.0 100.0 100.0     100.0
#>  N             15.0  12.0   5.0      32.0
#> ─────────────────────────────────────────
#> Chi-2 = 18 (df = 4), p = 0.00121, Cramer's V = 0.53

# Cross-tab with row percentages
cross_tab(mtcars, cyl, gear, rowprct = TRUE)
#> Crosstable: cyl x gear (%)
#> ─────────────────────────────────────────
#>  Values          3    4    5 Row_Total  N
#> ─────────────────────────────────────────
#>  4             9.1 72.7 18.2     100.0 11
#>  6            28.6 57.1 14.3     100.0  7
#>  8            85.7  0.0 14.3     100.0 14
#>  Column_Total 46.9 37.5 15.6     100.0 32
#> ─────────────────────────────────────────
#> Chi-2 = 18 (df = 4), p = 0.00121, Cramer's V = 0.53

# Cross-tab with column percentages grouped by a single variable
cross_tab(mtcars, cyl, gear, by = am)
#> $`0`
#> Crosstable: cyl x gear | am = 0 (%)
#> ───────────────────────────────────
#>  Values           3     4 Row_Total
#> ───────────────────────────────────
#>  4              6.7  50.0      15.8
#>  6             13.3  50.0      21.1
#>  8             80.0   0.0      63.2
#>  Column_Total 100.0 100.0     100.0
#>  N             15.0   4.0      19.0
#> ───────────────────────────────────
#> Chi-2 = 9 (df = 2), p = 0.0113, Cramer's V = 0.69
#> 
#> $`1`
#> Crosstable: cyl x gear | am = 1 (%)
#> ───────────────────────────────────
#>  Values           4     5 Row_Total
#> ───────────────────────────────────
#>  4             75.0  40.0      61.5
#>  6             25.0  20.0      23.1
#>  8              0.0  40.0      15.4
#>  Column_Total 100.0 100.0     100.0
#>  N              8.0   5.0      13.0
#> ───────────────────────────────────
#> Chi-2 = 3.8 (df = 2), p = 0.146, Cramer's V = 0.54

# Compute row-wise mean/sum (all values must be valid by default) or specific value
df <- data.frame(
  var1 = c(10, NA, 30, 40, 50),
  var2 = c(5, NA, 15, NA, 25),
  var3 = c(NA, 30, 20, 50, 10)
)
df
#>   var1 var2 var3
#> 1   10    5   NA
#> 2   NA   NA   30
#> 3   30   15   20
#> 4   40   NA   50
#> 5   50   25   10
mean_n(df)
#> [1]       NA       NA 21.66667       NA 28.33333
sum_n(df)
#> [1] NA NA 65 NA 85
count_n(df, count = 10)
#> [1] 1 0 0 0 1
count_n(df, special = "NA")
#> [1] 1 2 0 1 0
df |> mutate(count30 = count_n(count = 30))
#>   var1 var2 var3 count30
#> 1   10    5   NA       0
#> 2   NA   NA   30       1
#> 3   30   15   20       1
#> 4   40   NA   50       0
#> 5   50   25   10       0

# Extract labels from column names like "varname. label"
# This format ("name. label") is the default in LimeSurvey CSV exports
# when using: Export results → Export format: CSV → Headings: Question code & question text.
# It uses ". " (dot + space) as the default separator between the question code and question text.
df <- tibble::tibble(
  "age. Age of respondent" = c(25, 30),
  "score. Total score. Manually computed." = c(12, 14)
)

out <- label_from_names(df)

# View assigned labels
labelled::var_label(out)
#> $age
#> [1] "Age of respondent"
#> 
#> $score
#> [1] "Total score. Manually computed."

All functions can be directly used in pipelines.


Why use spicy?

  • Clean, expressive output
  • Works well with labelled survey data
  • Handles weights, percentages, NA counts
  • Great for exploring data and variables, teaching, or reporting

Citation

If you use spicy in a publication or teaching material, please cite it as:

Tawfik, A. (2025). spicy: Tools for Data Management and Variable Exploration (Version 0.1.0) [R package]. https://doi.org/10.5281/zenodo.15397865

You can also get the citation in R format by typing:

citation("spicy")

Or download the BibTeX citation directly.


License

This package is licensed under the MIT license. See LICENSE for details.